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How Do You Know When You Are Done Testing? 
 

You're responsible for a business critical, mission critical, or perhaps even safety critical 
system.  To add to the complexity, portions of the system are outsourced to one or more 
vendors.  How can you ensure that the quality of the delivered software is sufficient to 
meet the needs of its intended use?   

 
Right up front there are four big issues which need to be understood.  The first is the 
quality of the specifications from which they are designing tests.  The second is the 
enormous number of possible tests.  The third is that you need to ensure that you got the 
right answer for the right reason.  The fourth is the understanding that testing is 
essentially like an insurance policy - you would not spend a million dollars to insure a 
$100K house.  Similarly you would not spend a million dollars to test a system when 
your biggest downside risk was a $100K loss. 
 
1.  Testing, by definition, is comparing an expected result to an observed result.  This is 
as true in testing software as it is in taking a math test in school.  A test case is composed 
of a number of parts: the test input data, the system state(s) at the beginning of the test, 
the resultant outputs, and the post test system state(s).  In order to determine what the test 
outputs and post test state(s) should be requires a deterministic specification - i.e., a 
specification written at a level of detail and clarity that allows the tester to predetermine 
the exact values of all post test data/states given any input values/states. 
 
Very few projects have specifications at this level of detail unless the testers have been 
involved in testing the specifications to ensure that they are correct, complete, 
unambiguous, and logically consistent.  (This is a topic we cover in detail in the "Writing 
Testable Requirements" and "Requirements Based Testing" courses.)  The result of poor 
specifications is that testers design half tests - tests which only specify the inputs and 
initial state(s).  When they run their tests they "validate" the outputs based on what they 
think is "reasonable".  The result is that the test cases often find defects that the testers 
didn't because they did not know exactly what the test results should have been. 
 
A well thought out test design process should force the issue on getting clarified 
specifications and aid in identifying such issues. 
 

2. One of the major challenges in test case design is this simple fact: any system, except 
the most trivial ones, has more possible combinations and permutations of the 
inputs/states than there are molecules in the universe (which is 1080 according to Stephen 
Hawking in "A Brief History In Time").  The key challenge then is to select an 
infinitesimally small subset of tests which, if they run correctly, give you a very high 
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degree of assurance that all of the other combinations/permutations will also run 
correctly. 
 
The software industry has done a very poor job at meeting this challenge.  The result is 
that software still averages worse than 5 defects / 1K executable lines of code.  On the 
other hand those producing high end integrated circuits (e.g., Intel, Motorola) achieve 
defect rates of less than 1 defect / million gates.  Even though high end chips now exceed 
40 million gates you rarely hear about a logic error on the released products.  There is no 
fundamental difference in testing rules in software versus rules in hardware - rules are 
rules are rules.  The difference in quality is solely due to the difference in the 
development and testing approaches.  Hardware engineers use disciplined, rigorous 
approaches while software is still essentially a "craftsman" endeavor.  Software is now 
far too complex and critical to continue in this manner. 
 
3. Defects can cancel each other out for some cases, giving the appearance of a successful 
test when in fact there were defects along the path executed.   In a related problem, 
something going right on one part of the path can actually hide other things that went 
wrong elsewhere.  Unfortunately, the defects will show up sometime, sadly often in 
production.  The tests must be designed in such a way that if there are any defects in the 
code, no matter how long the path length to an observable event (e.g. data on screen, 
updates to a data base, packets sent over the communications lines, report entries) the 
defect will propagate (i.e. be visible) to a point where it can observed. 
 
4. Testers need to do a risk assessment of what the impact of failure would be in order to 
decide how much testing is enough.  This risk assessment should be done at the 
function/feature level.  Testers should do triage separating the failure exposure into 
groupings such as annoying vs. impairing vs. catastrophic, for example.  They should 
then have specific quantifiable levels of testing that should be done for each level of 
exposure. 

Determining how much testing is enough is first and foremost a business issue.  For 
example, in the world of E-Commerce, let’s consider what is at stake: 

• B2B transactions topped $734 billion in 2000 and are expected to grow to $8.5 
trillion by 2005 (Gartner Group) [Darwin Online - Numbers, April 5, 2001] 

• In the next four years $5 trillion will be invested in e-commerce. (IDC) [Electronic 
Commerce World, June 2001, Forecast article entitled "Global E-Commerce 
Spending to Top $5 Trillion by 2005"] 

• 93% of on-line users have encountered problems with B2B websites. (Motive 
Communications) [Darwin Online - Numbers, May 17, 2001] 

• Website outages are expensive: e-bay’s 22 hour outage in 1999 cost $3 to $5 million; 
credit card/sales authorization outages cost $2.6 million per hour; brokerage firm 
outages cost $6.5 million per hour. (Data Dimensions) [Testers' network, March/April 
2000] 
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• 82% of retail transactions are not completed.  42% of customers state that web-site 
malfunctions were the cause. (A. T. Kearney) [Infoworld November 20, 2000, By 
The Numbers] 

• $25 billion dollars in retail sales are lost due to the above problem. (Zona Research) 
[Darwin Online - Numbers, May 15, 2001] 

One of the fundamental challenges for E-Commerce applications is that defects are 
visible by and directly impact the customer.  Poor experiences with a web site can drive 
customers to the competition who are now only three mouse clicks away.  Consider these 
customer loyalty statistics: 

• It costs six times more to sell a new customer than an existing one. 

• A 5% increase in customer loyalty can increase profits by 25% to 85%. (Quality 
Digest, September 2000) ["Measuring  and Managing Customer Satisfaction" by 
Kevin Cacioppo] 

• The top 50% of firms in the American Consumer Satisfaction Index have an average 
market value of $42.5 billion; the bottom 50% $23.2 billion (University of Michigan) 
[Harvard Business Review, March 2001, "High Tech the Old-Fashioned Way" by 
Bronwyn Fryer] 

 

You can repeat this type of analysis for any class of application in the private and public 
sector.  In each case the number are enormous.  Just consider the following: 

 

• 70% of all projects fail to meet their objectives - e.g., 55% to 75% of CRM projects 
fail to meet their objective, 70% of ERP projects fail to meet their objectives [Meta 
Group as reported in Infoworld, "Survival Guide" column by Bob Lewis, 29 October 
2001] 

 

Yet when you ask testers how they know they are done testing, the most common 
responses are: 

1. We test until we are out of time and resources; 

2. We test until all of the test cases we created ran successfully at least once and there 
are no outstanding severe defects. 

I admire the honesty of the first answer.  It comes from the “clean conscience” school of 
testing – “I did all the testing I could under the constraints management gave me, and my 
conscience is clear”.  This is especially true today where we have moved from RAD 
(rapid application development) to FAD (frantic application development). The obvious 
question that follows the second answer is how much function and code were actually 
tested?  In the vast majority of cases, the team has no quantitative measure of their level 
of testing. 

You need to define quantitatively and qualitatively how much testing is enough and then 
design tests that will ensure that criterion is met.  You must do this for each type of 
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testing: functional, performance, usability, security, etc.  Given the space constraints, we 
will only address functional testing in this article. 

DESIGNING TESTS 
 
The basic testing steps are: 

1. Define quantitative and qualitative test completion criteria 
2. Design test cases to cover the above criteria 
3. Build "executable" test cases 
4. Run the test cases 
5. Verify test results 
6. Verify test coverage against completion criteria 
7. Manage test libraries 
8. Manage reported incidents/defects 

 
This view is handy because all of the testing tools fit into one or more of these categories.  
No tool addresses all of them.  For example, the BenderRBT test design tool addresses 
steps 1, 2, and 6. Playback tools address steps 3, 4, and 5. 

 

The goal and challenge of test case design is to identify an extremely small subset of the 
possible combinations of data that will give you an extremely high degree of confidence 
that the program will always work.  On the surface this might seem like an impossible 
task.  However, engineers who test high-end integrated circuits have been doing just this 
for decades.  In testing software we need to address the functional test completion criteria 
from a specification (black box) perspective and a code based (white box) perspective. 

 

In most organizations if you gave ten different testers the same specification or code to 
test you would get back ten different sets of tests.  This is because most tests are designed 
using a gut feel approach.  The thoroughness of the tests depend on the tester’s 
experience in testing, their experience in the application, their experience in the 
technology the application is running on, and how they were feeling the day they 
designed the tests.  All you know for sure when all of the tests ran correctly is that the 
tests ran correctly.  You do not know that the system is running correctly.  This level of 
assurance only occurs when the set of tests is mathematically equal to the set of function 
in the specifications. 

 

There are a number of published test completion criteria standards.  The Federal Aviation 
Administration has 178B (1992).  The code based criteria is each statement and branch 
executed at least once.  From a requirements perspective there is no quantified 
completion criteria.  Furthermore, 178B is now considered just a guideline.  It is up to the 
producers of the software to decide how much testing to do.  The Food and Drug 
Administration has 21CFR Section 820 (1997).  Again requirements based testing is not 
quantified. Code based coverage is statement and branch.  The ANSI/IEEE Std 1008-
1987 is statement coverage only and aimed at unit testing. 
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None of these standards address the key issues that any experienced tester has run into 
again and again.  These are: multiple defects can hide each other resulting in getting the 
right answer for the wrong reason; a defect might not be detected because of the long 
path length until an observable output is produced; some defects are only detectable if 
events happen in certain sequences - i.e., position dependent and sequence dependent 
events.  The test completion criteria and the test cases designed to meet that criteria must 
take these issues into account in order to meet the quality required of today's systems.  
We will address each of these issues in this paper. 

 

RIGOROUS BLACK BOX / SPECIFICATION BASED TEST CASE 
DESIGN CRITERIA 
Engineers testing hardware logic use rigorous algorithms to identify the necessary test 
cases.  Since rules are rules it should not matter, from a black box perspective, whether 
those rules have been implemented in hardware, firmware, or software.  Let’s look at 
what these algorithms do for us in designing tests using two examples. 

Figure 1 shows a simple application rule that states that if you have A or B or C you 
should produce D.  The test variations to test are shown in Figure 2.  The “dash” just 
means that the variable is false.  For example, the first variation is A true, B false, and C 
false, which should result in D true.  Each type of logical operator – simple, and, or, 
nand, nor, xor and not – has a well defined set of variations to be tested.  The number is 
always n+1 where n is the number of inputs to the relation statement.  In the case of the 
“or” you take each variable true by itself with all the other inputs false and then take the 
all false case.  You do not need the various two true at a time cases or three true at a time, 
etc.  These turn out to be mathematically meaningless from a black box perspective.  The 
test variations for each logical operator are then combined with those for other operators 
into test cases to test as much function in as small a number of tests as possible. 

Let us assume that there are two defects in the code that implements our A or B or C 
gives us D rule.  No matter what data you give it, it thinks A is always false and B is 
always true.  There is no Geneva Convention for software that limits us to one defect per 
function. 

 
 
 
Figure 1 - Simple "OR" Function With Two Defects 
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Figure 2 - Required Test Cases For The "OR" Function 
 

Figure 3 shows the results of running the tests.  When we run test variation 1 the software 
says A is not true, it is false.  However, is also says B is not false, it is true.  The result is 
we get the right answer for the wrong reason.  When we run the second test variation we 
enter B true, which the software always thinks is the case – we get the right answer.  
When we enter the third variation with just C true, the software thinks both B and C are 
true.  Since this is an inclusive “or,” we still get the right answer.  We are now reporting 
to management that we are three quarters done with our testing and everything is looking 
great.  Only one more test to run and we are ready for production.  However, when we 
enter the fourth test with all inputs false and still get D true, then we know we have a 
problem. 
 

 
 
Figure 3 - Variable "B" Stuck True Defect Found By Test Case 4 
 

There are two key things about this example so far.  The first is that software, even when 
it is riddled with defects, will still produce correct results for many of the tests.  The 
second thing is that if you do not pre-calculate the answer you were expecting and 
compare it to the answer you got you are not really testing.  Sadly, the majority of what 
purports to be testing in our industry does not meet these criteria.  People look at the test 
results and just see if they look “reasonable”.  Part of the problem is that the 
specifications are not in sufficient detail to meet the most basic definition of testing. 

 

When test variation four failed, it led to identifying the “B stuck true” defect.  The code is 
fixed and test variation four, the only one that failed, is rerun.  It now gives the correct 
results.  This meets the common test completion criteria that every test has run correctly 
at least once and no severe defects are unresolved.  The code is shipped into production.  
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However, if you rerun test variation one, it now fails (see Figure 4).  The “A stuck false” 
defect was not caused by fixing the B defect.  When the B defect is fixed you can now 
see the A defect.  When any defect is detected all of the related tests must be rerun. 
 

 
 
 
Figure 4 - Variable "A" Stuck False Defect Not Found Until Variable "B" Defect Fixed 
 

The above example addresses the issue that two or more defects can sometimes cancel 
each other out giving the right answers for the wrong reasons.  The problem is worse than 
that.  The issue of observability must be taken into account.  When you run a test how do 
you know it worked?  You look at the outputs.  For most systems these are updates to the 
databases, data on screens, data on reports, and data in communications packets.  These 
are all externally observable. 

In Figure 5 let us assume that node G is the observable output.  C and F are not externally 
observable.  We will indirectly deduce that the A, B, C function worked by looking at G.  
We will indirectly deduce that the D, E, F function worked by looking at G.  Let us 
further assume there is a defect at A where the code always assumes that A is false no 
matter what the input is.  A fairly obvious test case would be to have all of the inputs set 
to true.  This should result in C, F, and G being set to true.  When this test is entered the 
software says A is not true, it is false.  Therefore, C is not set to the expected true value 
but is set to false.  However, when we get to G it is still true as we expected because the 
D, E, F leg worked.  In this case we did not see the defect at C because it was hidden by 
the F leg working correctly. 
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Figure 5 - Variable "A" Stuck False Defect Not Observable 
 

Therefore, the test case design algorithms must factor in: 

• The relations between the variables (e.g., and, or, not) 

• The constraints between the data attributes (e.g., it is physically impossible for 
variables one and two to be true at the same time) 

• The functional variations to test (i.e., the primitives to test for each logical 
relationship) 

• Node observability 

The design of the set of tests must be such that if one or more defects are present, you are 
mathematically guaranteed that at least one test case will fail at an observable point.  
When that defect is fixed, if any additional defects are present, then one or more tests will 
fail at an observable point. 

These algorithms result in small, highly optimized test libraries relative to the complexity 
of the functions being tested.  For example, a fairly typical screen had a theoretical 
maximum number of tests of 137,438,953,472.  This was reduced down to 22 tests.  An 
embedded function helping to manage the operations of a car had over 5.5 x 1042 possible 
tests which were reduced to 137.  In other words, when those 137 tests ran correctly the 
specification based testing was done. 

Clearly, this approach focuses on the decision logic.  However, it also results in all of the 
transform rules being invoked as well.  It has been successfully used to test every type of 
application including business applications, manufacturing applications, military 
applications, scientific applications, medical applications, compilers, operating systems, 
data base management systems, and communications software.  It has been used for batch 
systems, real time systems and state machines.   It has been applied to every technology 
base including embedded systems, PC’s, client-server, web-based, mainframe, and super 
computer. 
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Thus, our black box test completion criteria is to test every functional variation, fully 
sensitized for the observability of defects, ensuring that all tests have run 
successfully in a single run or set of runs with no code changes in between the test 
runs.  

 

RIGOROUS WHITE BOX / CODE BASED TEST CASE DESIGN 
CRITERIA 
Test completion criteria for code are based on two major classifications - logic flow and 
data flow.  In logic flow the most basic level of coverage is statement coverage - i.e., did 
you execute every statement at least once.  This is sometimes called C0 coverage.  A 
slightly higher level of coverage includes the C0 level but adds to it branch vector 
coverage.  It verifies that each conditional branch has been taken true and false.  This is 
called C1 coverage.  In Figure 6, 100% C1 coverage could be obtained by executing two 
tests: Test 1 following a path of 1, 2(true), 3, 5(true), 6, 8(true loop), 8(false); Test 2 
following a path of 1, 2(false), 4, 5(false), 7, 8(true loop), 8(false). 

Even though these criteria have been around for over thirty years, little code shipped 
today meets this level of testing.  Most code today has only 30% to 50% of the statements 
executed before shipping into production.  This is held true for applications created for 
internal use as well as for vendor produced products shipped to third parties. 
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Figure 6 - Flow Chart With Data Dependencies 
 

Data flow coverage adds a higher level of rigor to the testing process.  For each variable 
used as input to a statement, it determines if each possible source of the data has been 
tested.  For a data flow to exist there must be a path from the instruction which sets the 
data to the instruction which uses the data along which no other instruction over-writes 
the data.  [Note: data flows are sometimes called “set-use pairs” in the literature.] 

Testing to the C1 level does not guarantee that each of these data flows will be executed.  
In fact when you reach C1 coverage you usually still have 20% to 40% of these data 
flows not tested.  This is a significant amount of function untested.  The basic data flow 
coverage is called D1 and includes the C1 coverage. 
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Looking at Figure 6 again we see that segment "8" uses variable X to determine how 
many times to loop.  The logic is that it loops, subtracts "1" from X, and checks to see if 
X is now "0".  If it is not "0" it loops again; if it is "0" it terminates the loop and continues 
on to the next statement.  X is modified by segments "1", "3", and "7".  When we 
executed Test 1 above, X was last set at segment "3".  This sets X to "10"; segment "8" 
therefore loops 10 times.  When we executed Test 2, X was last set by segment "7".  This 
sets X to "20"; segment "8" will loop 20 times.  Remember that these two tests satisfied 
100% C1 coverage.  However, we never executed a path where segment "1" was the last 
place to set X prior to executing segment "8".  We need to add Test 3 which follows the 
path 1, 2 (false), 4, 5(true), 6, 8.  However, let us assume that segment “1” sets X to 
minus 1.  After we loop and subtract 1, the loop control variable is now minus 2 and so 
on.  This path causes a nearly infinite loop. 

When we increased the test criteria from C1 to D1 we did find 25% more code-based 
defects.  These also tended to be types that would have been difficult to debug.  For 
example, many non-reproducible defects have spurious data flows at their root.  Static 
data flow analysis actually is able to predict where many of these will occur before even 
running the tests. 

There is another interesting insight from data flow analysis about test suite design – i.e., 
packaging the test cases into sets for execution.  In order to test a given data flow, the test 
case that includes it might have to be in a certain position in the test suite.  The most 
common requirement is for the test to be the first one executed.  It is not unusual to have 
multiple data flows each requiring their test to be first.  This requires the test suite to be 
broken into smaller execution packets each with the right tests first.  I have even seen 
data flows that would be tested only if included in a test that happened to be in just the 
sixteenth through the nineteenth position in the test suite.  It would work fine if placed 
anywhere from the first to the fifteenth position or in the twentieth position or later. 

Yet another interesting by product is that in order to execute certain data flows, multiple 
transactions/events must be executed in a particular sequence.  What happens is the first 
transaction/event modifies a variable which is then used by the second transaction/event. 

D1 level testing is key to testing maintenance changes since the big issue is the ripple 
effect of changes producing unexpected results.  The impact of any maintenance change 
can be calculated using data flow analysis.  There are rules for calculating the impact of 
adding code, deleting code, and changing the logic structure.  In each case the new data 
flows are identified, deleted data flows are identified, and the impact on the interface is 
calculated.   

Testing the asynchronous interaction between two or more processes with shared data is 
also almost totally a data flow issue (e.g., multiple applications running concurrently on a 
shared database; communications network software; multi-processor architectures). 

Thus our white box test completion criterion is: 

At minimum execute every statement and conditional branch true and false at least 
once (C1). 
Or for application critical, mission critical, and safety critical code execute the C1 
coverage plus every first order data flow at least once (D1). 
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You do not have to decide ahead of time whether you need to go to D1.  One approach is 
to test to the C1 level and then drill “test wells” to the D1 level.  That is, take selected 
modules and increase the level of testing to D1.  If the additional defects found are not 
proportional to the effort required you might decide that C1 was sufficient this time.  
However, if you are finding a substantial number of defects you might want to expand the 
scope of D1 testing. 

SUMMARY 
The test completion criteria we have defined here are not unique to any class of 
application.  We have applied them to embedded software up through software running 
on super computers.  We have applied them to business, scientific, military, and 
government applications.  The key issue is doing sufficient testing to mitigate the risks 
that would be incurred if defects occurred in the application.  Without quantitative test 
completion criteria you cannot make reasoned decisions as to whether or not the testing 
to date is sufficient to deploy the software.  In cases where the software development and 
test have been outsourced, the test criteria must be part of the contract.  Otherwise, how 
do you know the vendor has completed their testing?  The key is to be practical in 
defining and applying these criteria.   

Using the black box and white criteria on the same project does not mean you have two 
test efforts.  You first design tests from the specifications using the black box criteria.  
These tests should be designed before the code is written.  You then run these tests 
against the code and measure how much of the white box criteria are also met by these 
tests.  You then supplement the test library to complete the white box criteria.  The black 
box tests should execute about 90% of the C1 level coverage and about 70% of the D1 
level. 

Personally, as a tester, I find having quantifiable test completion status to report 
fundamentally changes the relationship of the tester to management.  All too often testers 
are managed by the “pounds per square inch” school of management.  That is, 
management keeps applying more and more pressure to get testing completed.  With test 
status numbers, which can easily be put on a spreadsheet, we can report that we are 
currently 62.9% specification based tested and 55.7% code based tested.  If management 
still wants to ship the application I ask them to please sign the spreadsheet showing the 
detailed status at ship time.  These numbers allow management to make informed, 
reasoned decisions as to the risks in shipping the application into production. 

Richard Bender has over thirty-five years experience in software.  He initially was a 
developer but went straight and has been a tester for over thirty years.  He is currently President 
of Bender RBT Inc, a software quality and testing consultancy.  He can be reached at 518-743-
8755; rbender@BenderRBT.com. 
 
 


